TEMAS 3 Y 4. TRIGONOMETRÍA

1. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

1.1 DEFINICIONES

Las **RAZONES TRIGONOMÉTRICAS** del ángulo α son:

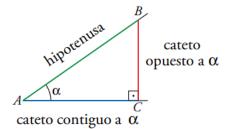
$$\sin \alpha = \frac{cateto\ opuesto}{hipotenusa}$$
 $\cos \alpha = \frac{catento\ contiguo}{lhipotenusa}$

$$tg \alpha = \frac{cateto \ opuesto}{cateto \ contiguo}$$

$$\csc\alpha = \frac{hipotenusa}{cateto\;opuesto} = \frac{1}{sen\alpha}$$

$$\sec\alpha = \frac{hipotenusa}{cateto\;contiguo} = \frac{1}{cos\alpha}$$

$$\cot \alpha = \frac{cateto\ contiguo}{cateto\ opuesto} = \frac{1}{tg\alpha}$$



1.2 RELACIONES FUNDAMENTALES

A partir de estas definiciones se deducen dos RELACIONES FUNDAMENTALES:

1.
$$sin^2\alpha + cos^2\alpha = 1$$

2.
$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

Ejemplos:

a) Sabiendo que $sen\alpha=\frac{4}{5}$, calcula $sin\alpha$ y $tg\alpha$.

1º Utilizamos la primera igualdad para obtener $\cos\alpha$:

$$sin^{2}\alpha + cos^{2}\alpha = 1 \rightarrow \left(\frac{4}{5}\right)^{2} + cos^{2}\alpha = 1 \rightarrow \frac{16}{25} + cos^{2}\alpha = 1$$

$$\cos^2 \alpha = 1 - \frac{16}{25} \to \cos^2 \alpha = \frac{9}{25} \to \cos \alpha = \pm \sqrt{\frac{9}{25}} = \frac{3}{5}$$

(Tomamos el signo positivo porque se trata de un ángulo agudo, y por tanto del primer cuadrante)

2º Utilizamos la segunda igualdad para obtener $tg\alpha$.

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \to tg\alpha = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{5} : \frac{3}{5} = \frac{20}{15} = \frac{4}{3}$$

b) Sabiendo que $tg\alpha = 3$, calcula $sin\alpha$ y $cos\alpha$.

Utilizando la primer y la segunda igualdad obtener un sistema de ecuaciones:

$$\begin{cases} tg\alpha = \frac{\sin\alpha}{\cos\alpha} \to 3 = \frac{\sin\alpha}{\cos\alpha} \to 3 = \frac{x}{y} \to 3y = x\\ \sin^2\alpha + \cos^2\alpha = 1 \to x^2 + y^2 = 1 \end{cases}$$

Sustituimos la primera ecuación en la segunda:

$$(3y)^{2} + y^{2} = 1 \rightarrow 9y^{2} + y^{2} = 1 \rightarrow 10y^{2} = 1 \rightarrow y^{2} = \frac{1}{10} \rightarrow y = \pm \sqrt{\frac{1}{10}}$$
$$= \frac{\sqrt{10}}{10}$$
$$x = 3y \rightarrow x = 3 \cdot \frac{\sqrt{10}}{10} = \frac{3\sqrt{10}}{10}$$

 $sin\alpha = 0.89 i cos\alpha = 0.45$

Ejemplo: Aplicando las relaciones fundamentales demuestra que $1+tg^2\alpha=\frac{1}{cos^2\alpha}$

$$1 + tg^{2}\alpha = 1 + \frac{sen^{2}\alpha}{cos^{2}\alpha} = \frac{cos^{2}\alpha + sen^{2}\alpha}{cos^{2}\alpha} = \frac{1}{cos^{2}\alpha}$$

1.3 UNIDADES DE MEDIDA

$$2\pi \, rad = 360^{\circ} \rightarrow \pi \, rad = 180^{\circ}$$

Ejemplo 1: Expresa en radianes 60°:3

$$\frac{180^{\circ} \rightarrow \pi \ rad}{60^{\circ} \rightarrow x \ rad} \rightarrow 60^{\circ} = \frac{60 \cdot \pi}{180} = \frac{\pi}{3} \ rad$$

<u>Ejemplo 2:</u> Expresa en grados sexagesimales $\frac{2\pi}{9}$ rad:

$$180^{\circ} \rightarrow \pi \ rad$$

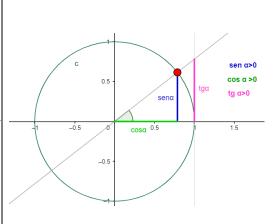
$$x^{\circ} \rightarrow \frac{2\pi}{9} \ rad \rightarrow 60^{\circ} = \frac{2 \cdot \pi \cdot 180}{9 \cdot \pi} = 40^{\circ}$$

2. RAZONES TRIGONOMÉTRICAS DE CUALQUIER ÁNGULO

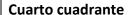
2.1 RAZONES TRIGONOMÉTRICAS DE 0 A 360 (Actividad Geogebra)

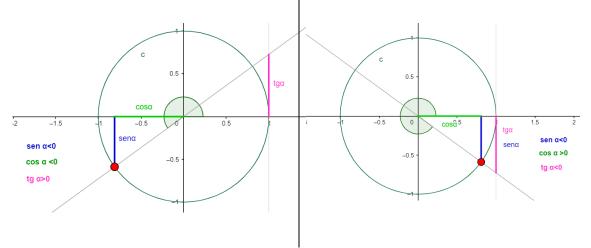
Segundo cuadrante sen a>0 cos a <0 tg a<0 sen a o tg a<0 tg a<0 tga

Primer cuadrante



Tercer cuadrante



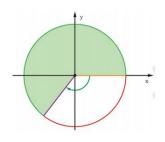


2.2 **ÁNGULOS MAYORES QUE 360** (Actividad Geogebra)

$$\begin{array}{ll} \alpha & :360 \\ \beta & n \end{array} \rightarrow \alpha = 360^{\circ} \cdot n + \beta \rightarrow \begin{cases} sen\alpha = sen\beta \\ cos\alpha = cos\beta \\ tg\alpha = tg\beta \end{cases}$$

2.3 **ÁNGULOS MENORES QUE 0** (Actividad de Geogebra)

$$\alpha < 0 \rightarrow \begin{cases} sen\alpha = sen(360^{\circ} + \alpha) \\ cos\alpha = cos(360^{\circ} + \alpha) \\ tg\alpha = tg(360^{\circ} + \alpha) \end{cases}$$



Ejemplo 1: Pasa estos ángulos al intervalo $(0,360^{\circ})$ y di el signo de sus razones trigonométricas:

a)
$$1175^{\circ} = 360 \cdot 3 + 95 \rightarrow 2^{\circ} cuadrante \rightarrow sen\alpha +, cos\alpha -, tg\alpha -$$

b)
$$-120^{\circ} = 360 - 120 = 240 \rightarrow 3^{\circ} cuadrante \rightarrow sen\alpha -, cos\alpha -, tg\alpha +$$

<u>Ejemplo 2:</u> Explica en que cuadrante está el ángulo α y calcula las razones trigonométricas que faltan:

$$cos\alpha = \frac{\sqrt{3}}{2}$$
 y $\alpha > 90^{\circ}$

Como $cos \alpha > 0$ y $\alpha > 90$ se trata del cuarto cuadrante y entonces $sen \alpha -, tg \alpha -$

Aplicamos la primera relación fundamental:

$$sin^{2}\alpha + cos^{2}\alpha = 1 \rightarrow \left(\frac{\sqrt{3}}{2}\right)^{2} + cos^{2}\alpha = 1 \rightarrow \frac{3}{4} + cos^{2}\alpha$$

$$= 1$$

$$sen^2\alpha = 1 - \frac{3}{4} \rightarrow sen^2\alpha = \frac{1}{4} \rightarrow sen\alpha = \pm \sqrt{\frac{1}{4}} = -\frac{1}{2}$$

Utilizamos la segunda relación para calcular $tg\alpha$.

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \to tg\alpha = -\frac{1}{2} : \frac{\sqrt{3}}{2} = \frac{-2}{2\sqrt{3}} = \frac{-1}{\sqrt{3}} = \frac{-\sqrt{3}}{3}$$

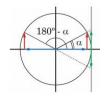
3. REDUCCIÓN AL PRIMER CUADRANTE

3.1 ÁNGULOS COMPLEMENTARIOS (α y 90 $-\alpha$)

$$\begin{cases} sen(90 - \alpha) = cos\alpha \\ cos(90 - \alpha) = sen\alpha \\ tg(90 - \alpha) = \frac{1}{tg\alpha} \end{cases}$$

3.2 ÁNGULOS SUMPLEMENTARIOS (lpha y 180-lpha)

$$\begin{cases} sen(180 - \alpha) = sen\alpha \\ cos(180 - \alpha) = -cos\alpha \\ tg(180 - \alpha) = -tg\alpha \end{cases}$$

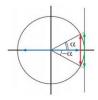


3.3 ÁNGULOS CUYA DIFERENCIA ES 180 (α y $180 + \alpha$)

$$\begin{cases} sen(180 + \alpha) = -sen\alpha \\ cos(180 + \alpha) = -cos\alpha \\ tg(180 + \alpha) = tg\alpha \end{cases}$$

3.4 ÁNGULOS OPUESTOS ($\alpha y - \alpha$)

$$\begin{cases} sen(-\alpha) = -sen\alpha \\ cos(-\alpha) = cos\alpha \\ tg(-\alpha) = -tg\alpha \end{cases}$$



<u>Ejemplos</u>: Si sabemos que $sen50^\circ = 0,77$ calcula las razones trigonométricas sin hacer uso de la calculadora:

a)
$$cos40 = sen(90 - 40) = sen50 = 0.77$$

b)
$$sen 130 = sen (180 - 50) = sen (50) = 0.77$$

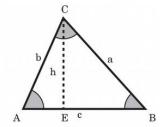
c)
$$cos220 = cos(180 + 40) = -cos(40) = -0.77$$

d)
$$sen(-50) = -sen50 = -0.77$$

e)
$$cos(320) = cos(360 - 40) = cos(40) = 0.77$$

4. TEOREMA DE LOS SENOS

$$\frac{a}{\operatorname{sen}\hat{A}} = \frac{b}{\operatorname{sen}\hat{B}} = \frac{c}{\operatorname{sen}\hat{C}}$$

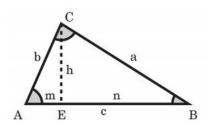


5. TEOREMA DEL COSENO

$$a^{2} = b^{2} + c^{2} + 2 \cdot b \cdot c \cdot cosA$$

$$b^{2} = a^{2} + c^{2} + 2 \cdot a \cdot c \cdot cosB$$

$$c^{2} = a^{2} + b^{2} + 2 \cdot a \cdot b \cdot cosC$$



6. RESOLUCIÓN DE TRIANGULOS

RESOLVER UN TRIÁNGULO es calcular los elementos desconocidos (lados y ángulos) a partir de unos valores conocidos.

CASO 1. Conocemos los tres lados

- Aplicamos dos veces el teorema del coseno para calcular dos ángulos.
- Calculamos el tercer ángulo sabiendo que la suma de los ángulos de un triángulo son 180.

<u>Ejemplo:</u> Resuelve el triángulo del que conocemos a = 16, b = 13, c = 18.

1º Aplicamos el teorema del coseno.

$$18^{2} = 16^{2} + 13^{2} - 2 \cdot 16 \cdot 13 \cos C$$

$$\rightarrow 324 = 256 + 169 - 416 \cos C \rightarrow \cos C = \frac{101}{416} \rightarrow$$

$$C = \cos^{-1}\left(\frac{101}{416}\right) = 75,95^{\circ} = 75^{\circ}56'56''$$

2º Aplicamos de nuevo el teorema del coseno.

$$16^{2} = 18^{2} + 13^{2} - 2 \cdot 18 \cdot 13 \cos A$$

$$\rightarrow 256 = 324 + 169 - 468 \cos A \rightarrow \cos A = \frac{237}{469} \rightarrow$$

$$A = \cos^{-1}\left(\frac{237}{469}\right) = 59,65^{\circ} = 59^{\circ}38'48''$$

3º Calculamos el tercer ángulo sabiendo que la suma de los tres ángulos son 180.

$$B = 180 - 75,95^{\circ} - 59,65^{\circ} = 44.4^{\circ} = 44^{\circ}24'$$

CASO 2: Conocemos dos ángulos y un lado

- Calculamos el tercer ángulo sabiendo que la suma de los tres ángulos es 180.
- Aplicamos el teorema de los senos para calcular los lados desconocidos.

<u>Ejemplo:</u> Resuelve el triángulo del que conocemos $\alpha = 15$, $A = 45^{\circ}$, $C = 30^{\circ}$.

1º Calculamos el tercer ángulo.

$$B = 180 - 45 - 30 = 105^{\circ}$$

2º Aplicamos el teorema de los senos para calcular un lado.

$$\frac{15}{sen \ 45} = \frac{b}{sen \ 105} \rightarrow b = \frac{15 \cdot sen 105}{sen 45} = 20,49$$

3º Aplicamos de nuevo el teorema de los senos para calcular el tercer lado.

$$\frac{15}{sen \ 45} = \frac{c}{sen \ 30} \to c = \frac{15 \cdot sen 30}{sen \ 45} = 10,61$$

CASO 3: Conocemos dos lados y un ángulo

3.1 Dos lados y el ángulo comprendido.

- Aplicamos el teorema del coseno para calcular el tercer lado.
- Aplicamos el teorema de los senos para calcular uno de los ángulos desconocidos. (Cuidado. Al aplicar el teorema de los senos puede haber dos soluciones, pues entre 0 y 180 hay dos ángulos con el mismo seno)
- Calculamos el tercer ángulo aplicando la suma de los ángulos igual a 180.

Ejemplo: Resuelve el triángulo del que conocemos $a=17, b=32, C=40^{\circ}$.

1º Aplicamos el teorema del coseno para calcular el lado desconocido.

$$c^{2} = 17^{2} + 32^{2} - 2 \cdot 17 \cdot 32 \cdot \cos 40 \rightarrow$$

$$c^{2} = 289 + 1024 - 1088 \cdot \cos 40 \rightarrow c^{2} = 479.5 \rightarrow c = 21.9$$

2º Aplicamos el teorema de los senos para calcular uno de los ángulos desconocidos.

$$\frac{17}{senA} = \frac{21.9}{sen 40} \rightarrow senA = \frac{17 \cdot sen40}{21.9} \rightarrow A = 29.9$$

(Comprobamos que no existe una segunda solución $180-29,9=150,1\rightarrow150,1+40=190,1>180$)

3º Calculamos el tercer ángulo.

$$B = 180 - 40 - 29.9 = 110.1^{\circ}$$

3.2 Dos lados y un ángulo diferente.

- Aplicamos el teorema de los senos para calcular uno de los ángulos desconocidos. (Cuidado. Al aplicar el teorema de los senos puede haber dos soluciones, pues entre 0 y 180 hay dos ángulos con el mismo seno)
- Calculamos el tercer ángulo aplicando la suma de los ángulos igual a 180.
- Aplicamos el teorema del coseno para calcular el lado desconocido.

Ejemplo: Resuelve el triángulo del que conocemos a=10, b=14, $A=45^{\circ}$.

1º Aplicamos el teorema de los senos.

$$\frac{10}{\text{sen}45} = \frac{14}{\text{sen}B} \to \text{sen}B = \frac{14 \cdot \text{sen}45}{10} \to B = 81,87^{\circ}$$

(Comprobamos que no existe una segunda solución $180-81,87=98,13\rightarrow 98,13+45=143,13<180$, dos soluciones)

2º Resolvemos los dos triángulos por separado.

Si
$$B = 81,87$$
 ° \rightarrow $C = 180 - 45 - 81,87 = 53,13$ °
$$c^{2} = 10^{2} + 14^{2} - 2 \cdot 10 \cdot 14 \cdot \cos 53,13 \rightarrow$$

$$c^{2} = 128 \rightarrow c = 11,31$$
Si $B = 98,13$ ° \rightarrow $C = 180 - 45 - 98,13 = 36,87$ °
$$c^{2} = 10^{2} + 14^{2} - 2 \cdot 10 \cdot 14 \cdot \cos 36,87 \rightarrow$$

$$c^{2} = 72 \rightarrow c = 8,49$$

7. PROBLEMAS.

8. SUMA Y DIFERENCIA DE ÁNGULOS

8.1 SUMA DE DOS ÁNGULOS

$$sen (\alpha + \beta) = sen\alpha \cdot cos\beta + sen\beta \cdot cos\alpha$$
$$cos (\alpha + \beta) = cos\alpha \cdot cos\beta - sen\alpha \cdot sen\beta$$
$$tg (\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta}$$

8.2 RESTA DE DOS ÁNGULOS

$$sen (\alpha - \beta) = sen\alpha \cdot cos\beta - sen\beta \cdot cos\alpha$$

$$cos (\alpha - \beta) = cos\alpha \cdot cos\beta + sen\alpha \cdot sen\beta$$

$$tg (\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha \cdot tg\beta}$$

<u>Ejemplos</u>: A partir de las razones trigonométricas de 30° y 45° , calcula las siguientes razones trigonométricas:

a)
$$sen(75) = sen(45 + 30) = sen45 \cdot cos30 + cos45 \cdot sen30 = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

b)
$$cos(75) = cos(45 + 30) = cos45 \cdot cos30 - sen45 \cdot sen30 = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

c)
$$tg(75) = tg(45 + 30) = \frac{tg45 + tg30}{1 - tg45 \cdot tg30} = \frac{1 + \frac{\sqrt{3}}{3}}{1 - 1 \cdot \frac{\sqrt{3}}{3}} = \frac{\frac{3 + \sqrt{3}}{3}}{\frac{3 - \sqrt{3}}{3}} = \frac{3 + \sqrt{3}}{3 - \sqrt{3}} = \frac{12 + 6\sqrt{3}}{6} = 2 + \sqrt{3}$$

d)
$$sen(15) = sen(45 - 30) = sen45 \cdot cos30 - sen30 \cdot cos45 = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

e)
$$cos(15) = cos(45 - 30) = cos45 \cdot cos30 + sen45 \cdot sen30 = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

f)
$$tg(15) = tg(45 - 30) = \frac{tg45 - tg30}{1 + tg45 \cdot tg30} = \frac{1 - \frac{\sqrt{3}}{3}}{1 + 1 \cdot \frac{\sqrt{3}}{3}} = \frac{\frac{3 - \sqrt{3}}{3}}{\frac{3 + \sqrt{3}}{3}} = \frac{3 - \sqrt{3}}{3 + \sqrt{3}} = \frac{12 - 6\sqrt{3}}{6} = 2 - \sqrt{3}$$

9. RAZONES DEL ÁNGULO DOBLE

$$sen 2\alpha = 2sen\alpha \cdot cos\alpha$$

$$cos2\alpha = cos^2\alpha - sen^2\alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

Ejemplos: Obtén las razones trigonométricas de 120° a partir de las de 60°.

$$sen 120 = sen(2 \cdot 60) = 2se60 \cdot cos60 = 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}$$

$$cos120 = cos(2 \cdot 60) = cos^2 60 - sen^2 60 = \left(\frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$$

$$tg120 = tg(2 \cdot 60) = \frac{2tg60}{1 - tg^2 60} = \frac{2 \cdot \sqrt{3}}{1 - \left(\sqrt{3}\right)^2} = \frac{2\sqrt{3}}{-2} = -\sqrt{3}$$

10. <u>IDENTIDADES</u>

CASO 1. UNO DE LOS MIEMBROS ES MUY SENCILLO

Se modifica uno de los miembros hasta alcanzar el otro.

ASO 2. LA INFORMACIÓN SE MUESTRA EQUILIBRADA

Se modifican ambos miembros al mismo tiempo utilizando "sí y solo sí".

Ejemplo: Demuestra
$$\frac{sec2x \cdot (cosx + senx)}{1 + tg^2x} = \frac{cos^2x}{cosx - senx}$$

$$sec2x \cdot (cosx + senx) \cdot (cosx - senx) = cos^2x \cdot (1 + tg^2x) \leftrightarrow$$

$$\frac{1}{cos2x} \cdot (cos^2x - sen^2x) = cos^2x \cdot \left(1 + \frac{sen^2x}{cos^2x}\right) \leftrightarrow$$

$$\frac{1}{cos2x} \cdot cos 2x = cos^2x \cdot \left(\frac{cos^2x + sen^2x}{cos^2x}\right) \leftrightarrow$$

$$1 = cos^2x \cdot \left(\frac{1}{cos^2x}\right) \leftrightarrow 1 = 1$$

11. ECUACIONES TRIGONOMÉTRICAS

11. 1 DIRECTAS

<u>Ejemplo:</u> Calcula el ángulo o ángulos que cumplen $sen\left(\frac{\alpha+\pi}{4}\right) = \frac{\sqrt{3}}{2}$

1º Determinamos que ángulos en radianes cumplen que $sen x = \frac{\sqrt{3}}{2}$

$$x = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

Pero como $sen \ x = sen(180 - x) = sen \ (\pi - x) \to x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$

 2° Despejamos el valor de α para las dos soluciones.

$$\frac{\alpha + \pi}{4} = \frac{\pi}{3} \to \alpha + \pi = \frac{4\pi}{3} \to \alpha = \frac{4\pi}{3} - \pi \to \alpha = \frac{\pi}{3}$$
$$\frac{\alpha + \pi}{4} = \frac{2\pi}{3} \to \alpha + \pi = \frac{8\pi}{3} \to \alpha = \frac{8\pi}{3} - \pi \to \alpha = \frac{5\pi}{3}$$

11.2 SACANDO FACTOR COMÚN

Ejemplo: Resuelve la ecuación $senx + senx \cdot cosx = 0$

1ºSacamos factor común.

$$senx + senx \cdot cosx = 0 \rightarrow senx(1 + cosx) = 0$$

2º Igualamos ambos factores a cero y resolvemos las dos ecuaciones.

$$senx = 0 \rightarrow x = 0 \ y \ senx = sen(180 - x) \rightarrow x = 180 - 0 = 180$$

 $1 + cosx = 0 \rightarrow cosx = -1 \rightarrow x = 180 \ y \ cosx = cos(-x) \rightarrow x = 360 - 180 = 180$

11.3 USANDO LAS RELACIONES FUNDAMENTALES

<u>Ejemplo 1:</u> Calcula el ángulo o ángulos que cumplen $cos\alpha = -sen\alpha$

$$cos\alpha = -sen\alpha \rightarrow 1 = -\frac{sen\alpha}{cos\alpha} \rightarrow 1 = -tg\alpha \rightarrow tg\alpha = -1 \rightarrow$$

$$\alpha = -45 = 360 + (-45) = 315 \text{ y } tg\alpha = tg(180 + \alpha) \rightarrow \alpha = 180 + (-45) = 135$$

Ejemplo 2: Resuelve la ecuación $sen\alpha + cos^2\alpha = -1$

1º Aplicamos la relación $sen^2\alpha+cos^2\alpha=1$ para expresar la ecuación en función de una única razón trigonométrica.

$$sen\alpha + cos^2\alpha = -1 \rightarrow sen\alpha + (1 - sen^2\alpha) = -1 \rightarrow -sen^2\alpha + sen\alpha + 2 = 0$$

2º Resolvemos la ecuación de segundo grado.

$$sen\alpha = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot 2}}{2 \cdot (-1)} = \frac{-1 \pm \sqrt{9}}{-2} = \frac{2}{-1}$$

3º Obtenemos los ángulos para las dos soluciones:

$$sen\alpha = 2 \rightarrow \nexists$$

 $sen\alpha = -1 \rightarrow \alpha = 270 \text{ y } sen\alpha = sen(180 - \alpha) \rightarrow \alpha = 180 - 270 = -90 = 360 - 90 = 270$

11.4 APLICANDO LAS FÓRMULAS TRIGONOMÉTRICAS

Ejemplo: Resuelve la ecuación sen 2x = senx

1º Aplicamos la fórmula de ángulo doble.

$$sen 2x = senx \rightarrow 2senx \cdot cosx = senx \rightarrow 2senx \cdot cosx - senx = 0$$

2º Sacamos factor común:

$$senx(2cosx - 1) = 0 \to \\ senx = 0 \to \alpha = 0 \ y \ \alpha = 180 - 0 = 180 \\ 2cosx - 1 = 0 \to 2 \ cosx = 1 \to \cos x = \frac{1}{2} \to x = 60 \ y \ cosx = \cos (-x) \to x = 360 - 60 = 300$$